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Abstract
This paper is concerned with the existence and uniqueness of the entropy
solution to the initial boundary value problem for the inviscid Burgers equation


ut +

(
u2

2

)
x

= 0 x > 0 t > 0
u(x, 0) = u0(x) x � 0
u(0, t) = 0 t � 0.

To apply the method of vanishing viscosity to study the existence of the
entropy solution, we first introduce the initial boundary value problem for the
viscous Burgers equation, and as in Evans (1998 Partial Differential Equations
(Providence, RI: American Mathematical Society) and Hopf (1950 Commun.
Pure Appl. Math. 3 201–30), give the formula of the corresponding viscosity
solutions by Hopf–Cole transformation. Secondly, we prove the convergence
of the viscosity solution sequences and verify that the limiting function is an
entropy solution. Finally, we give an example to show how our main result can
be applied to solve the initial boundary value problem for the Burgers equation.

PACS numbers: 02.30.Jr, 02.60.Lj

1. Introduction and the main result

In this paper, we mainly consider the existence and uniqueness of the entropy solution to the
initial boundary value problem for the inviscid Burgers equation

ut +

(
u2

2

)
x

= 0 x > 0 t > 0 (1.1)
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with initial data

u(x, 0) = u0(x) x � 0 (1.2)

and boundary condition

u(0, t) = 0 t � 0. (1.3)

It is well known that the existence of the weak solution to the Cauchy problem for the Burgers
equation was first studied by Hopf by using the method of vanishing viscosity (cf [7]). He
applied the Hopf–Cole transformation to give the formula of the viscosity solutions, and proved
the convergence of the corresponding viscosity solution sequences. At time, the weak solution
was obtained by the limiting function. The uniqueness of the entropy solution was studied by
Oleinik (cf [12]). For the Cauchy problem for general scalar hyperbolic conservation law, the
existence of the weak solutions was studied by many authors (cf Tartar [17], Schonbek [14],
Chen and Lu [4], Oleinik [12], Rozdestvenskii and Janenko [13], Dafermos [5], also see [6,
16]). Kruzkov in [8] proved the existence and uniqueness of the solution to the Cauchy problem
for scalar hyperbolic conservation laws with several space variables. Recently, Bressan, Liu
and Yang [2, 3, 11] proved the L1-stability of the weak solution to the Cauchy problem for the
hyperbolic conservation laws.

In this paper, our interest is to study the existence and uniqueness of the entropy solution
to the initial boundary value problem (1.1)–(1.3) (cf [9]). It is difficult to study the initial
boundary value problem due to the boundary layer. To overcome the difficulties caused by the
boundary layer, we need make some technical constriction to initial data (cf (1.7)), which will
be used in the proof of (2.20) later.

At first, we give the definition of the entropy solution.

Definition 1.1. We say a function u ∈ L∞((0,∞)×(0,∞)) is an entropy solution to the initial
boundary value problem (1.1)–(1.3) provided that u satisfies the following two conditions:

(i) (integral equation)∫ ∞

0

∫ ∞

0

(
uϕt +

u2

2
ϕx

)
dx dt +

∫ ∞

0
u0ϕ dx|t=0 = 0 (1.4)

for all test functions ϕ(x, t) ∈ C∞
0 ([0,∞) × [0,∞)).

(ii) (entropy condition)

u(x + z, t) − u(x, t) � C

(
1 +

1

t

)
z (1.5)

for some constant C � 0 and almost all x, z ∈ R
+, t > 0.

Under the above definition, our main result is stated as follows.

Theorem 1.2. Suppose

u0 ∈ L∞([0,∞)) (1.6)

and

h(x) :=
∫ x

0
u0(y) dy � 0 (1.7)

for all x � 0, then there exists a unique entropy solution to the initial boundary value problem
(1.1)–(1.3).

The proof of theorem 1.2 is completed by three steps: in step 1, we add an artificial
viscosity term εuε

xx to the right-hand side of (1.1) to get the viscous Burgers equation.
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Then a formula on viscosity solution sequences {uε(x, t)} is obtained by the Hopf–Cole
transformation; in step 2, we consider the limiting behaviour of uε(x, t) as ε → 0 and show
that the limiting function is an entropy solution to (1.1)–(1.3); and in step 3, we prove the
uniqueness of the entropy solution.

2. The proof of the main result

We will study the solution to the initial boundary value problem (1.1)–(1.3) by using the
method of vanishing viscosity. As in [7], we consider the initial boundary value problem for
the viscous Burgers equation


uε

t + uεuε
x = εuε

xx x > 0 t > 0
uε(x, 0) = u0(x) x � 0
uε(0, t) = 0 t � 0.

(2.1)

Lemma 2.1. The initial boundary value problem (2.1) has a solution for any small parameter
ε > 0

uε(x, t) =
∫ ∞
−∞

x−y

t
e− k(x,y,t )

2ε dy∫ ∞
−∞ e− k(x,y,t )

2ε dy
x > 0 t > 0 (2.2)

where

k(x, y, t) = (x − y)2

2t
+ h̃(y) x � 0 t � 0 y ∈ R (2.3)

and

h̃(y) =
{

h(y) if y � 0

h(−y) if y < 0.
(2.4)

Proof. As in [6, 7, 13], let

wε(x, t) =
∫ x

0
uε(y, t) dy x � 0 t � 0. (2.5)

Then (2.1) is rewritten as follows:


wε
t − εwε

xx + 1
2

(
wε

x

)2 = 0 x > 0 t > 0
wε(x, 0) = h(x) x � 0
wε

x(0, t) = 0 t � 0.

(2.6)

We introduce the Hopf–Cole transformation

vε(x, t) = e− wε(x,t)
2ε x � 0 t � 0 (2.7)

then vε(x, t) solves the following initial boundary value problem for the heat equation (with
conductivity ε):


vε

t − εvε
xx = 0 x > 0 t > 0

vε(x, 0) = e− h(x)
2ε x � 0

vε
x(0, t) = 0 t � 0

(2.8)

the unique bounded solution of which is

vε(x, t) = 1√
4πεt

∫ ∞

0

(
e− (x−y)2

4εt + e− (x+y)2

4εt

)
e− h(y)

2ε dy. (2.9)
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From (2.5) and (2.7), we have

uε(x, t) = ∂

∂x
wε(x, t) = −2ε

vε
x(x, t)

vε(x, t)
. (2.10)

Furthermore, by (2.9), (2.3) and (2.4), (2.10) can be rewritten as

uε(x, t) =
∫ ∞

0

(
x−y

t
e− (x−y)2

4εt + x+y

t
e− (x+y)2

4εt

)
e− h(y)

2ε dy∫ ∞
0

(
e− (x−y)2

4εt + e− (x+y)2

4εt

)
e− h(y)

2ε dy

=
∫ ∞

0
x−y

t
e− (x−y)2

4εt
− h(y)

2ε dy +
∫ ∞

0
x+y

t
e− (x+y)2

4εt
− h(y)

2ε dy∫ ∞
0 e− (x−y)2

4εt
− h(y)

2ε dy +
∫ ∞

0 e− (x+y)2

4εt
− h(y)

2ε dy

=
∫ ∞

0
x−y

t
e− (x−y)2

4εt
− h(y)

2ε dy +
∫ 0
−∞

x−y

t
e− (x−y)2

4εt
− h(−y)

2ε dy∫ ∞
0 e− (x−y)2

4εt
− h(y)

2ε dy +
∫ 0
−∞ e− (x−y)2

4εt
− h(−y)

2ε dy

=
∫ ∞
−∞

x−y

t
e− k(x,y,t )

2ε dy∫ ∞
−∞ e− k(x,y,t )

2ε dy
.

This completes the proof of lemma 2.1. �

Now we consider the limiting behaviour of the viscosity solution sequences {uε(x, t)}
given by (2.2) as ε → 0. For this purpose, we first state two lemmas, whose proof can be
found in [6].

Lemma 2.2. Assume u0 ∈ L∞([0,∞)), then

(i) for each time t > 0, there exists a unique point y(x, t) for all but at most countably many
values of x ∈ [0,∞) such that

min
y∈R

k(x, y, t) = k(x, y(x, t), t) (2.11)

(ii) the mapping x �→ y(x, t) is nondecreasing.

Lemma 2.3. Suppose that l,m : R → R are continuous functions, satisfying

(i) l grows at most linearly and m grows at least quadratically;
(ii) there exists a unique point y0 ∈ R such that

m(y0) = min
y∈R

m(y).

Then

lim
ε→0

∫ ∞
−∞ l(y) e− m(y)

2ε dy∫ ∞
−∞ e− m(y)

2ε dy
= l(y0). (2.12)

Owing then to lemmas 2.2 and 2.3, we easily find the limiting behaviour of the solution
uε(x, t) to the initial boundary value problem (2.1) for the viscous Burgers equation. That is,
we have

Theorem 2.4. For almost all x > 0 and t > 0,

lim
ε→0

uε(x, t) = lim
ε→0

∫ ∞
−∞

x−y

t
e− k(x,y,t )

2ε dy∫ ∞
−∞ e− k(x,y,t )

2ε dy
= x − y(x, t)

t
(2.13)

where y(x, t) is defined by (2.11).
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Next we will verify that u(x, t) = x−y(x,t)

t
is an entropy solution to the initial boundary

value problem (1.1)–(1.3). For doing this, we give the following lemmas:

Lemma 2.5. The initial boundary value problem for the Hamilton–Jacobi equation


wt + 1
2 w2

x = 0 x > 0 t > 0
w(x, 0) = h(x) x � 0
wx(0, t) = 0 t � 0

(2.14)

has a unique entropy solution

w(x, t) = min
y∈R

k(x, y, t) x � 0 t � 0 (2.15)

that makes the following results hold:

(i) w(x, t) is Lipschitz continuous in [0,∞) × [0,∞),
(ii) wt + 1

2w2
x = 0, almost everywhere (x, t) ∈ (0,∞) × (0,∞),

(iii) w(x, 0) = h(x), x � 0 and
(iv) wx(0, t) = 0, t � 0.

Proof. Define

h̃(x) =
{
h(x) x � 0
h(−x) x < 0.

Consider the Cauchy problem for the Hamilton–Jacobi equation{
w̃t + 1

2 w̃2
x = 0 x ∈ R t > 0

w̃(x, 0) = h̃(x) x ∈ R.
(2.16)

By using the results in [6], there exists a unique entropy solution w̃(x, t) to (2.16) satisfying

(α) w̃(x, t) is Lipschitz continuous in R × R
+,

(β) w̃(x, t) satisfies the equation w̃t + 1
2 w̃2

x = 0 for almost everywhere x ∈ R, t ∈ R
+ and

(γ ) w̃(x, 0) = h̃(x), x ∈ R.

Now we define for x � 0, t � 0

w(x, t) = w̃(x, t) |x�0 .

Then w(x, t) satisfies (i), (ii) and (iii) in lemma 2.5. Now we verify that w(x, t) satisfies (iv).
In fact, it is easy to verify that w̃1(x, t) = w̃(−x, t) also is an entropy solution to (2.16).

By the uniqueness of the solution to the Cauchy problem for the Hamilton–Jacobi equation,
we deduce

w̃(x, t) = w̃(−x, t) x ∈ R t ∈ R
+

which implies

w̃x(0, t) = 0 t � 0

i.e. wx(0, t) = 0, t � 0.
This proves lemma 2.5. �

Note that w(x, t) = miny∈R k(x, y, t) is Lipschitz continuous, then differentiable for
almost all (x, t). We define

u1(x, t) := ∂

∂x
w(x, t) = ∂

∂x
min k(x, y, t) (2.17)

for almost all (x, t) ∈ [0,∞) × [0,∞). Then we have the following lemma. The proof can
be found in [6].
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Lemma 2.6. u1(x, t) defined by (2.17) can be expressed as

u1(x, t) = x − y(x, t)

t

for almost all (x, t) ∈ [0,∞) × [0,∞), where y(x, t) is defined by (2.11).
Thus

u(x, t) = u1(x, t) = ∂

∂x
w(x, t) = x − y(x, t)

t
.

Next, we give the existence theorem of the entropy solution to the initial boundary value
problem (1.1)–(1.3).

Theorem 2.7 (Existence). The limiting function

u(x, t) = x − y(x, t)

t
x � 0 t � 0

which is obtained by uε(x, t) (cf (2.13)), is an entropy solution to the initial boundary value
problem (1.1)–(1.3). Here y(x, t) is defined by (2.11).

Proof. Set w(x, t) = miny∈R k(x, y, t) (x � 0, t � 0). Then lemma 2.5 shows that w(x, t)

is Lipschitz continuous, differentiable for a.e. (x, t) and solves


wt + 1
2w2

x = 0 a.e. (x, t) ∈ [0,∞) × [0,∞)

w(x, 0) = h(x) x � 0

wx(0, t) = 0 t � 0.

Choose any test function ϕ ∈ C∞
0 ([0,∞) × [0,∞)), then∫ ∞

0

∫ ∞

0

(
wt +

1

2
w2

x

)
ϕx dx dt = 0. (2.18)

Note that after two integrations by parts, we have∫ ∞

0

∫ ∞

0
wtϕx dx dt = −

∫ ∞

0

∫ ∞

0
wϕtx dx dt +

∫ ∞

0
wϕx dx

∣∣∣∣
t=∞

t=0

= −
∫ ∞

0

∫ ∞

0
wϕtx dx dt −

∫ ∞

0
wϕx dx

∣∣∣∣
t=0

=
∫ ∞

0

∫ ∞

0
wxϕt dx dt −

∫ ∞

0
wϕt dt

∣∣∣∣
x=∞

x=0

−
(

wϕ|x=∞
x=0 −

∫ ∞

0
wxϕ dx

)∣∣∣∣
t=0

=
∫ ∞

0

∫ ∞

0
wxϕt dx dt +

∫ ∞

0
wxϕ dx

∣∣∣∣
t=0

+
∫ ∞

0
wϕt dt

∣∣∣∣
x=0

+ wϕ

∣∣∣∣
x=0

.

(2.19)

On the other hand

w(0, t) = min
y∈R

k(0, y, t) = min
y∈R

{
y2

2t
+ h̃(y)

}
.
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By (1.7) and (2.4) we see h̃(y) � 0 (y ∈ R). It follows that

y2

2t
+ h̃(y) > 0 for any y �= 0 t > 0

and (
y2

2t
+ h̃(y)

)∣∣∣∣
y=0

= h̃(0) = 0.

Thus

w(0, t) = 0 t > 0 (2.20)

which implies from (2.19)∫ ∞

0

∫ ∞

0
wtϕx dx dt =

∫ ∞

0

∫ ∞

0
wxϕt dx dt +

∫ ∞

0
wxϕ dx

∣∣∣∣
t=0

. (2.21)

Substituting (2.21) into (2.18), we have∫ ∞

0

∫ ∞

0

(
wxϕt +

1

2
w2

xϕx

)
dx dt +

∫ ∞

0
wxϕ dx

∣∣∣∣
t=0

= 0. (2.22)

Since u(x, t) = x−y(x,t)

t
= wx(x, t) for almost all (x, t) ∈ (0,∞) × (0,∞), then (2.22)

becomes ∫ ∞

0

∫ ∞

0

(
uϕt +

1

2
u2ϕx

)
dx dt +

∫ ∞

0
u0ϕ dx

∣∣∣∣
t=0

= 0

which show that u(x, t) = x−y(x,t)

t
is the integral solution to the initial boundary value problem

(1.1)–(1.3).
Finally, we prove that the entropy condition (1.5) holds. In fact, according to [6], we have

u(x + z, t) − u(x, t) � C

t
z

for some constant C � 0 and x, z ∈ R
+, t > 0. This completes the proof of theorem 2.7. �

Theorem 2.8 (Uniqueness). The entropy solution defined by definition 1.1 is unique.

Proof. Similar to lemma 2.5, we easily prove that if u(x, t)(x � 0, t � 0) is a solution to
(1.1), then −u(−x, t) (x < 0, t > 0) is also. Noting that u(0, t) = 0 (t � 0), we extend u, u0

to all of R by odd reflection, that is

ũ(x, t) :=
{
u(x, t) x � 0 t � 0
−u(−x, t) x < 0 t � 0

and

ũ0(x) :=
{
u0(x) x � 0
−u0(−x) x < 0.

Then ũ(x, t) solves the following Cauchy problem:{
ũt + ũũx = 0 x ∈ R t > 0
ũ(x, 0) = ũ0(x) x ∈ R.

(2.23)

Evans [6] shows us that there exists—up to a set of measure zero—at most one entropy
solution to the Cauchy problem (2.23). So there exists at most one entropy solution to the
initial boundary value problem (1.1)–(1.3). This completes the proof of theorem 2.8. �
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Theorems 2.7 and 2.8 imply theorem 1.2.

3. An example

In this section, we give an example to show how our main result can be applied to solve the
initial boundary value problem for the Burgers equation.

Let the initial data u0(x) (x � 0) in (1.2) satisfy the following three conditions:

(i) limx→0+ u0(x) = u0 > 0,

(ii) limx→∞ u0(x) = u+ and
(iii) u0(x)(x � 0) is a nondecreasing, continuous function in [0, ∞).

Then, by the method of characteristics, it is easy to get the unique entropy solution to the
initial boundary value problem (1.1)–(1.3), which has the following form for (x, t) ∈ [0,∞)×
[0,∞):

u(x, t) :=



x

t
x � u0t

u0(y(x, t)) x > u0t

(3.1)

where y = y(x, t) denotes the unique solution to the equation

tu0(y) = x − y x > u0t . (3.2)

Now we will show that the unique entropy solution stated by theorem 1.2 also has the
form (3.1), that is the function u(x, t) defined by (3.1) can be restated as

u(x, t) = x − y(x, t)

t

where y(x, t) is defined by (2.11).
Choose any x0 > 0, t0 > 0. We have to find miny∈R k(x0, y, t0) and the optimizer

y0 = y(x0, t0) when the minimum is taken.
Let

k(y) := k(x0, y, t0) = (x0 − y)2

2t0
+ h̃(y) y ∈ R. (3.3)

Since h̃(y) (y ∈ R) is an even function and is increasing in [0,∞). So k(y) is decreasing in
(−∞, 0] and increasing in [x0,∞). Thus we have that

min
y∈R

k(y) = min
y∈[0,x0]

k(y).

On the other hand, note that

(i) when y = 0, k(0) = x2
0

2t0
= ∫ x0

0
y

t0
dy

(ii) when y = x0, k(x0) = h̃(x0) = ∫ x0

0 u0(y) dy

(iii) when 0 < y < x0, ky(y) = y−x0

t0
+ u0(y).

Then we can get the optimizer y0.

Case 1. When x0 � u0t0, the equation ky(y) = 0 has no solution in (0, x0) due to the monotony
of u0(x) (x � 0), which shows the optimizer y0 cannot be obtained in (0, x0). Noting that
k(0) < k(x0), we have y0 = y(x0, t0) = 0. Thus

u(x0, t0) = x0 − y(x0, t0)

t0
= x0

t0
. (3.4)
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Case 2. When x0 > u0t0, the equation ky(y) = 0, that is

t0u0(y) = x0 − y

has a unique solution due to the monotony and continuity of u0(x) (x � 0), which shows the
optimizer y0 can be uniquely obtained in (0, x0). So we have

u(x0, t0) = x0 − y(x0, t0)

t0
= u0(y0) = u0(y(x0, t0)). (3.5)

These arguments show that the solution found by the method of characteristics is just one
generated by theorem 1.2.
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